Stochastic filtering via L projection on mixture manifolds with computer algorithms and numerical examples
نویسندگان
چکیده
We examine some differential geometric approaches to finding approximate solutions to the continuous time nonlinear filtering problem. Our primary focus is a new projection method for the optimal filter infinite dimensional Stochastic Partial Differential Equation (SPDE), based on the direct L2 metric and on a family of normal mixtures. We compare this method to earlier projection methods based on the Hellinger distance/Fisher metric and exponential families, and we compare the L2 mixture projection filter with a particle method with the same number of parameters, using the Levy metric. We prove that for a simple choice of the mixture manifold the L2 mixture projection filter coincides with a Galerkin method, whereas for more general mixture manifolds the equivalence does not hold and the L2 mixture filter is more general. We study particular systems that may illustrate the advantages of this new filter over other algorithms when comparing outputs with the optimal filter. We finally consider a specific software design that is suited for a numerically efficient implementation of this filter and provide numerical examples.
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملA Family of Selective Partial Update Affine Projection Adaptive Filtering Algorithms
In this paper we present a general formalism for the establishment of the family of selective partial update affine projection algorithms (SPU-APA). The SPU-APA, the SPU regularized APA (SPU-R-APA), the SPU partial rank algorithm (SPU-PRA), the SPU binormalized data reusing least mean squares (SPU-BNDR-LMS), and the SPU normalized LMS with orthogonal correction factors (SPU-NLMS-OCF) algorithms...
متن کاملThree Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint
Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fi...
متن کاملOn the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملJoint pricing, inventory, and preservation decisions for deteriorating items with stochastic demand and promotional efforts
This study models a joint pricing, inventory, and preservation decision-making problem for deteriorating items subject to stochastic demand and promotional effort. The generalized price-dependent stochastic demand, time proportional deterioration, and partial backlogging rates are used to model the inventory system. The objective is to find the optimal pricing, replenishment, and preservation t...
متن کامل